Overview

This section introduces a beautiful use of definite integrals: Finding the volume of certain 3D shapes. Specifically, we will focus on 3D shapes that have circular cross sections. These objects are called solids of revolution, since they have rotational symmetry. You may find it hard to visualize what is happening with these shapes, so we’ll spend a fair amount of time in class practicing this. Visualization is a skill that you can learn – start now, with the resources below!

Basic Learning Objectives

These are the tasks you should be able to perform with reasonable fluency when you arrive at your next class meeting. Important new vocabulary words are indicated in italics.

  • Experience various visualizations of volumes of revolution.

  • Given the volume of a representative slice of a 3D object, write an integral that represents the exact volume of the 3D object.

Advanced Learning Objectives

In addition to mastering the basic objectives, here are the tasks you should be able to perform after class, with practice:

  • Given a 2D region bounded by simple functions, sketch: A representative rectangular slice, a representative revolved “ring”, “disk”, or “washer”, and the final 3D shape obtained by revolving it around an axis.

  • Given a 2D region bounded by simple functions, set up and evaluate an integral that gives the volume of a solid of revolution around any vertical or horizontal axis.

  • Choose the most appropriate direction to slice a region, so as to create a simple integral representing its volume.

  • Recognize situations in which many “thin” objects are being added together, and use an integral to evaluate these sums exactly.

To prepare for class


Authors

Charles Fortin Avatar Charles Fortin
Gabriel Indurskis Avatar Gabriel Indurskis

Published

Last Updated

Category

cal2

Tags

Feedback

Please click here if you find a mistake or broken link/video, or if you have any other suggestions to improve this page!