Summary of Tests for Convergence of Series

Geometric Series
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p-Series

The p-series

p < 1. This includes the special case of the Harmonic
series for p = 1, which diverges.
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T, converges if p > 1 and diverges if

Divergence Test

If the sequence ay,, does not converge to 0, then the series
Z aj, diverges.

This is the first test to apply
because the conclusion is simple.
However, if lim,— o0 an = 0, no
conclusion can be drawn.

Integral Test

Let f be a positive, decreasing function on an interval
[c,00] and let ap, = f(k) for each positive integer k > c.

o If f:" f(t) dt converges, then Zak converges.

o If f:o f(t) dt diverges, then Zak diverges.

Use this test when f(z) is easy to
integrate.

Direct
son Test

Compari-

Let 0 < ai < by for each positive integer k.
o If Z by converges, then Z aj, converges.

o If Z ay, diverges, then Z by diverges.

Use this test when you have a se-
ries with known behavior that you
can compare to — this test can be
difficult to apply.

Limit Comparison
Test

Let an and by, be sequences of positive terms. If
a
lim - =
k— o0 bk

for some positive finite number L, then the two series
Z ay, and Z by either both converge or both diverge.

Easier to apply in general than
the comparison test, but you must
have a series with known behavior
to compare. Useful to apply to se-
ries of rational functions.

Ratio Test

Let ap # 0 for each k and suppose

lim Llﬂ'l‘ =r
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e Ifr < 1, then the series Z aj, converges absolutely.

e If r > 1, then the series Z ap diverges.

e If r =1, then test is inconclusive.

This test is useful when a series in-
volves factorials and powers.

Root Test

Let aj > 0 for each k and suppose

lim ¥ap =r.

k— o0
e If r < 1, then the series Z aj, converges.

e If r > 1, then the series Z ap diverges.

e If r =1, then test is inconclusive.

In general, the Ratio Test can usu-
ally be used in place of the Root
Test. However, the Root Test can
be quick to use when aj involves
kth powers.

Alternating Series
Test

If a,, is a positive, decreasing sequence so that lim a, =
n— oo

0, then the alternating series E (—1)k*+1a; converges.

This test applies only to alternat-
ing series — we assume that the
terms ay are all positive and that
the sequence {an } is decreasing.

Alternating Series
Estimation Theo-
rem

n

Let Sy, = z:(fl)lﬁ'la;C be the nth partial sum of the

k=1
=)

alternating series E (—1)**1ay. Assume ap, > 0 for each
k=1
positive integer m, the sequence a, decreases to 0 and
lim S, = S. Then it follows that |S — S| < an+1.

n—roo

This bound can be used to deter-
mine the accuracy of the partial
sum Sy, as an approximation of the
sum of a convergent alternating se-
ries.

Based on an excerpt from AcCTIVE CALCULUS by Matthew Boelkins, https://activecalculus.org/single/
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Flowchart by Ralph Freese, http://math.hawaii.edu/~ralph/



