		1
Geometric Series	The geometric series $\sum_{k=1}^{\infty} ar^{k-1}$ with ratio r converges for $-1 < r < 1$ and diverges for $ r \ge 1$.	The sum of the convergent geo- metric series $\sum_{k=1}^{\infty} ar^{k-1}$ is $\frac{a}{1-r}$. The <i>N</i> -th partial sum is given by $S_N = \sum_{k=1}^{N} ar^{k-1} = a \cdot \frac{1-r^N}{1-r}$
p-Series	The <i>p</i> -series $\sum \frac{1}{k^p}$ converges if $p > 1$ and diverges if $p \le 1$. This includes the special case of the <i>Harmonic</i> series for $p = 1$, which diverges.	
Divergence Test	If the sequence a_n does not converge to 0, then the series $\sum a_k$ diverges.	This is the first test to apply because the conclusion is simple. However, if $\lim_{n\to\infty} a_n = 0$, no conclusion can be drawn.
Integral Test	Let f be a positive, decreasing function on an interval $[c, \infty]$ and let $a_k = f(k)$ for each positive integer $k \ge c$. • If $\int_c^{\infty} f(t) dt$ converges, then $\sum a_k$ converges. • If $\int_c^{\infty} f(t) dt$ diverges, then $\sum a_k$ diverges.	Use this test when $f(x)$ is easy to integrate.
Direct Compari- son Test	 Let 0 ≤ a_k ≤ b_k for each positive integer k. If ∑ b_k converges, then ∑ a_k converges. If ∑ a_k diverges, then ∑ b_k diverges. 	Use this test when you have a se- ries with known behavior that you can compare to – this test can be difficult to apply.
Limit Comparison Test	Let a_n and b_n be sequences of positive terms. If $\lim_{k \to \infty} \frac{a_k}{b_k} = L$ for some positive finite number L , then the two series $\sum a_k$ and $\sum b_k$ either both converge or both diverge.	Easier to apply in general than the comparison test, but you must have a series with known behavior to compare. Useful to apply to se- ries of rational functions.
Ratio Test	 Let a_k ≠ 0 for each k and suppose lim_{k→∞} a_{k+1} / a_k = r. If r < 1, then the series ∑ a_k converges absolutely. If r > 1, then the series ∑ a_k diverges. If r = 1, then test is inconclusive. 	This test is useful when a series in- volves factorials and powers.
Root Test	 Let a_k ≥ 0 for each k and suppose lim_{k→∞} ^k√a_k = r. If r < 1, then the series ∑ a_k converges. If r > 1, then the series ∑ a_k diverges. If r = 1, then test is inconclusive. 	In general, the Ratio Test can usu- ally be used in place of the Root Test. However, the Root Test can be quick to use when a_k involves <i>k</i> th powers.
Alternating Series Test	If a_n is a positive, decreasing sequence so that $\lim_{n \to \infty} a_n = 0$, then the alternating series $\sum (-1)^{k+1} a_k$ converges.	This test applies only to alternat- ing series – we assume that the terms a_n are all positive and that the sequence $\{a_n\}$ is decreasing.
Alternating Series Estimation Theo- rem	Let $S_n = \sum_{k=1}^n (-1)^{k+1} a_k$ be the <i>n</i> th partial sum of the alternating series $\sum_{k=1}^\infty (-1)^{k+1} a_k$. Assume $a_n > 0$ for each positive integer <i>n</i> , the sequence a_n decreases to 0 and $\lim_{n \to \infty} S_n = S$. Then it follows that $ S - S_n < a_{n+1}$.	This bound can be used to deter- mine the accuracy of the partial sum S_n as an approximation of the sum of a convergent alternating se- ries.

Summary of Tests for Convergence of Series

SERIES CONVERGENCE/DIVERGENCE FLOW CHART

